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The Collapse Point of Interacting Trails in 
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We present simulational evidence that kinetic growth trails on the square lattice 
are equivalent to interacting trails at their collapse temperature. As a conse- 
quence we give values for most of the canonical exponents of the trail collapse 
transition: these are significantly different from those proposed for interacting 
walks. We can also interpret our results in terms of the equivalent Lorentz 
lattice gas and find that this model does not display diffusion, as has been 
previously thought. Rather, the mean square displacement grows as t log t in 
time t. 
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lattice gas. 

1. I N T R O D U C T I O N  

The canon ica l  mode l  in statist ical  mechanics  of po lymer  con fo rm a t ions  in 
so lu t ion  has been self-avoiding walks  on  a regular  lattice. This  mode l  
manifes t ly  includes  the "excluded vo lume"  co nd i t i on  of  real polymers .  
A n o t h e r  mode l  of  po lymer  conf igura t ions  s tudied extensively,  and  defined 
on  a lattice, is tha t  of  trails. 11-4~ These are pa ths  on  a latt ice which have no  
two steps on  the same b o n d  of  tha t  latt ice bu t  m a y  occupy the same site 
(for the square  lattice see Fig. 1 ). This  restr ic t ion is somet imes  referred to 
as b o n d  avoid ing ,  in con t ras t  to self-avoiding walks  (SAW),  which  are site 
avo id ing  ( that  is, no  two vertices of  the walk  m a y  occupy the same site on  
the lattice.) Clear ly  walks  are, by  default ,  also b o n d  avoiding.  Trai ls  
possess an  exchided v o l u m e  effect a n d  b o t h  these models ,  w i thou t  further  
embel l i shment ,  should  describe the universa l  proper t ies  of po lym er  con-  
fo rmat ions  in a so-called 'good '  solvent  ( tha t  is, one  that  does no t  induce  
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Fig. h The allowed vertex configurations (that do not differ by rotation) on the square 
lattice, with the heavy bold lines representing sections of the loop. Configurations (d) and (e) 
do not occur in walks and are those that are weighted in the ISAT problem. However, con- 
figuration (d) is topologically similar to a nearest-neigbor configuration that does occur in 
walks. On the other hand, configuration (e) has no counterpart in a walk system. 

strong attractive interactions between sections of  the polymer). It is 
believed that trails and SAW are in the same universality class ~5' 6) which 
describes these good solvent polymers. In two dimensions the fractal 
dimension d s of these objects is accepted to be 4/3, and so they are not 
compact,  but rather swollen with respect to a random walk ( d i = 2 ) .  
Moreover,  the configurational properties of  self-avoiding walks have been 
mapped formally to the statistics of the magnetic O(n) model in the limit 
n ~ 0 ~7-9~ and so one can see directly that the long-length limit of  SAW 
can be viewed as a critical phenomenon.  This is clearer still in the grand 
ensemble of  SAW (SAW of all lengths with a step fugacity) where the tem- 
perature of  the O(n) model is simply related to the step fugacity. 

To model situations where the complex, solvent-mediated, m o n o m e r -  
monomer  interactions affect a polymer's  conformation,  an attractive energy 
is associated with nonconsecutive nearest-neighbor sites on a SAW. For  a 
trail the energy is usually associated with contact or multiply visited sites 
[configurations (d) and (e) of  Fig. 1]. It is seen experimentally ~~ ~1) that 
as the temperature or solvent quality is decreased, a polymer in solution 
undergoes a rapid change in its size and collapses from an extended object 
(as compared to a random walk) to a compact  one (fractal dimension equal 
to that of  the space) at some value of  these parameters. This is known as 
the 0-point 1~2~ and is now believed to be a thermodynamic critical point. In 
the step-fugacity-polymer-temperature plane the 0-point is believed to be a 
tricritical point. ~ L3) 

The collapse transition of  polymers in dilute solution has been the 
subject of  intensive investigations in recent years, especially in two dimen- 
sions since the work of  Duplantier and Saleur (DS) 1~4~. They predicted the 
exact values for the exponents at the tricritical point using the Coulomb 
gas method. Numerical evidence ~5''61 from studies of interacting self- 
avoiding walks ( ISAW) has been ambiguous. However, an exact solution 
on the Manhat tan  lattice ~7' ~s~ has lent weight to the DS values. In this 
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context, the collapse transition of interacting trails (ISAT) has also been 
studied. There is a prediction ~2-4) that ISAT should be in a different univer- 
sality class from ISAW. Again numerical results in two dimensions ~19"2~ ~6~ 
have been inconclusive and results tend to show several of the exponent 
estimates to be similar for the two models (for a recent review see ref. 21). 

In this paper we tackle the question of the universality class of col- 
lapsing trails by arguing that one can map kinetic growth trails t22~ (see 
below for a definition) onto ISAT at their collapse temperature. Thereby, 
we deduce the scaling of the important quantities in the ISAT model. These 
are markedly different from those predicted for the DS model ~4" 23.243 for 
walks and numerically confirmed for a related model t25) and those recently 
shown to be exact for ISAW on the Manhatten lattice. ~7" ts) We therefore 
argue that the universality classes of ISAW and ISAT are indeed different, 
despite noninteracting SAW and trails belonging to the same universality 
class. (Our evidence, while strong, being numerical, does not constitute a 
proof. ) 

The model of interacting trails on the square lattice is defined as 
follows. Consider all different bond-avoiding paths of length N that can be 
formed on the square lattice with one end fixed at a particular site (the set 
cg). Associate an energy - e  with each doubly visited site. For each con- 
figuration count the number m of doubly visited sites of the lattice and 
give that configuration a Boltzmann weight w m = e x p ( f l e m ) .  The partition 
function of the ISAT model is then given by 

Z N ( w )  = ~'. e x p ( f l e m )  (1) 

The average root-mean-square end-to-end distance RN(w) is defined 
similarly on this distribution. 

For high temperatures the partition function and average root-mean- 
square end-to-end distance are expected to scale as 

and 

Z N ( w )  ~ AI-trCN y -  l (2) 

R N ( w )  ~ B N  ~ (3) 

with A, B, and p expected to vary with temperature and be nonuniversal, 
while y and v are expected to be constant, universal, and take on the values 
for noninteracting trails (and hence SAW). The connective 'constant'  p is 
related to the free energy f ( f l )  of the system as 

p = exp[ --pf(f l )  ] (4) 
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The exact exponent values in two dimensions, from the work of Nienhuis 
o n  SAW, tz6) are believed to be v=3 /4  and ?,=43/32. 

For low enough temperatures it is accepted that the partition sum is 
dominated by configurations that are internally dense and the average 
root-mean-square end-to-end distance scales as 

RN~ BN i/2 (5) 

The partition function should scale differently ~27~ from that at high tem- 
peratures, since a compact polymer should have a well-defined surface (and 
associated surface free energy). Hence 

N N I/'2 ) ' c - -  1 ZN(W)~ Al~ p~ N (6) 

with/1.,. < 1. Note that A, B,/a, and /L  are temperature dependent. 
It has been shown (2) that there should exist a collapse temperature fl, 

such that v takes on a value v, between the high and low-temperature ones. 
For the sake of comparison the value ~14) of v, for ISAW is believed to be 
4/7, which is also the exponent related to the size of the hulls of percolation 
clustertZS. 29) at threshold. Moreover, Shapir and Oono t2) showed that this 
point should be tricritical in nature, as it is at the ISAW collapse point. As 
mentioned above, it is an open question whether the ISAW and ISAT 
collapse points are in the same universality class. For ISAT at an estimated 
collapse point it has been further estimated that v, = 0.569 __ 0.008, t3~ 
which includes the value 4/7~0.571. (However, the estimates of v, are 
known to be very sensitive to the assumed value of the critical temperature. ) 
The scaling of the partition function should be of the high-temperature 
mathematical form with a different value of the exponent ?', denoted ?'t. 
For tricritical (0-like) points there exists a scaling theory ~31~ defining the 
behavior of physical quantities around this point in the temperature-length 
(or step fugacity) plane. The crossover from high-and low-temperature 
behavior to that right at the collapse point is controlled by a crossover 
exponent ~b. For example, for temperatures close to fl, and large lengths N 
the root-mean-square end-to-end distance is expected to behave as 

RN ~ B,NV'~(etN r (7) 

where t=(f l , - f l ) / f l , ,  while B, and e are nonuniversal constants. The 
function ~ has asymptotic properties for large arguments (positive and 
negative) so as to asymptotically match the high-and low-temperature 
behaviors. 

It is also interesting to consider polymer models in the presence of a 
boundary where an attractive surface potential is added in order to explore 
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a possible adsorption transition. One usually considers polymers attached 
at one or both ends to a surface and defines the respective partition func- 

7 ( l l ) t  w - tions Z~)(w, w,) and o N t , ws). For example, defining the appropriate 
configurational set ego), one finds that the partition function of trails 
attached to an interactive surface is 

Z(NI)(w, Ws)= ~ wmw ms ( 8 )  

where m s is the number of surface contacts. For fixed bulk weight w it is 
expected that an adsorption transition takes place as a function of w s. 
The average number of surface contacts Ms.N= ( m s )  is expected to be 

ad while bounded as a function of N for all fixed ws less than some value w s , 
ad At this special value it is expected to scale linearly with N for ws > ws . 

ws = w~ d the average number of surface contacts Ms. N is expected to scale 
with some power of N between 0 and 1 indicative of the transition. 
Similarly, the partition functions Z c *) and Z ~1~) have associated exponents 
)'1 and y~ which take on different values depending on whether w s is below, 
at, or above the adsorption point (also known as the special point). (The 
exponents for ws< w~ d are known as the ordinary values--these designa- 
tions arise form a comparison to magnetic systems.) Importantly, all these 
exponents depend on whether the bulk temperature is above, at, or below 
the collapse point. Above bulk criticality the surface exponents should take 
on their SAW values, while below criticality the adsorption transition is 
expected to be first order. 

The growth model of kinetic trails was introduced by Lyklema c22~ as 
a description of polymerization. It is defined as follows. Choose a starting 
site on a square lattice and dynamically construct a trail by adding steps 
at integer time intervals, choosing at each time step equally from the 
available nearest-neighbor sites that do not violate the bond-avoiding 
condition. This produces trails of any length with a particular distribution 
different from that of noninteracting (static) trails. Except for the first step, 
if the kinetic trail is not on a site that has been visited previously, there 
are three choices and the probability of each is simply 1/3. Otherwise, the 
choice is restricted to only one possibility, ignoring the effect of the start, 
and the probability is 1. One can easily see then that each 'probability 1' 
step is associated with a contact (doubly visited site). Lyklema c22) found 
estimates of the analogs of the exponents v ~ 0.535 and y ~ 1.025 (this value 
for y is a misprint which should have been quoted as 0.975 according to the 
da ta- - in  any case, it is close to 1). 

Meirovitch e t  al. (19) and Bradley (32~ carefully showed that the kinetic 
growth loops, with a modified starting position, could be mapped exactly 

822/79/5-6-12 



956 Owczarek and Prellberg 

onto the static problem of interacting self-avoiding trails that are closed at 
a particular temperature (equivalent to Boltzmann weight WKG T -----e p` = 3). 
Meirovitch et aL (19~ noted the proximity of the estimates of w, to 3 and the 
possibility that they may coincide. Bradley rather noted that the work of 
Meirovitch and Lim C33'3~ gave w, = 2.962(6) and thus excluded w = wKcx 
as the possible collapse value. Given this estimate of the critical tempera- 
ture, he tentatively concluded, not unreasonably, that fie = log 3 lay in the 
collapsed phase. This would indicate that Lyklema's exponent estimates 
should eventually cross over to the collapsed values. 

In an extensive numerical study of the related Lorentz lattice gas, t34' 35) 
known as the Ruijgrok-Cohen mirror model, (36-38) Ziff et al. c3s~ apparently 
confirmed the prediction of Bradley when they found that v was indeed 1/2. 
However, they found the presence of logaritmic corrections to some quan- 
tities. 

As mentioned above, it was recently ~27) illustrated that a different 
scaling form (6) was possible for the low-temperature polymer-problem 
partition function from that at high temperatures. The scaling form implied 
by the work of Ziff et aL ~38) for the partition function is incompatible with 
the conjecture t27) for the collapsed phase and this led us to reexamine the 
problem of kinetic trails. Also recently, Bradley's work on kinetic walks on 
the Manhattan lattice (~7) has been extended by the simulation of these 
walks keeping track of the internal energy and specific heat with a view to 
calculating the crossover exponent. This has proved successful, ~17" 25) with 
the bonus that Bradley's mapping have been extended to surface properties. 
Here, we report on a similar study with kinetic growth trails. 

2. S I M U L A T I O N S  OF KINETIC G R O W T H  TRAILS 

We have generated kinetic growth trails of various lengths up to 10 6 
steps. The occupied sites of the walk were stored by means of a hash 
table, 139) with the hash index being computed from the coordinates. This 
enables efficient testing of self-avoidance without having to store the whole 
lattice, so that the generation of a walk of length N requires time O(N)  
only. The size of the hash table needs to exceed the maximal walk length 
only slightly, so that the memory requirement is also O(N).  When a walk 
reaches the desired maximal length or gets trapped, a new one gets 
generated, thereby ensuring the statistical independence of the walks 
sampled at fixed length. 

We have calculated the proportion left open at various stages QN, the 
root-mean-square end-to-end distances R~, and information on the 
number of contacts for the calculation of the internal energy U~ and the 
specific heat CN with estimates of statistical errors. With the recent focus on 
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the reliability of random number generators t4~ we mention that we have 
used an implementation of a mixed linear congruential algorithm t4~) that 
has proved to be comparatively reliable. 

Although the generated walks are independent of each other, we have 
highly correlated data between different lengths, as every walk of a given 
length has contributed to all data sets of shorter length. We notice that this 
can be effectively overcome by calculating quantities using an exponential 
spacing. We use finite-size approximations for the exponent estimations. 
For instance, if a quantity scales asymptotically with N as 

XN~CN ~, 2 > 0  or Xjv~A+CN ~, 2 < 0  (9) 

we use finite-size estimators 2N defined as 

2 u 1 XN or 2u=lOg 2 Xu--Xu/z (10) 
= og2 Xu/-----2 Xu/z - -  XN]4 

If justifiable, we then graphically extrapolate these estimations toward 
infinity. Using various different scales to do this gives a rather good idea 
about the type of finite-size corrections involved. 

First we simulated the model on an unbounded lattice to investigate 
the bulk behavior. For this, we generated 1.226 • 107 samples of trails up 
to a length N =  104; 2.66 x 106 of length 105; and 4.5 x 105 of length 106. 
For the sake of comparison, it took 66 CPU days to generate the trails of 
length 106 on a IBM RISC 6000/560. 

In a fashion similar to the work on the Manhattan lattice, ~m one can 
extend Bradley's mapping to consider trails on the half-plane (see Fig. 2). 
In this way it is possible to explore a range of surface potentials and 
thereby consider nonattractive surfaces (the ordinary point) and look for 
the adsorption transition (special point). We generated 5.5 x 105 samples of 
trails of lengths up to 5 x 104 with adsorbing boundary conditions which 
gives boundary conditions that mimic the bulk, and hence no surface 
attraction, which is the ordinary point. We also generated 106 samples of 
maximum length 2.0 x 105 with completely reflecting boundary conditions, 
which is equivalent to a boundary weight of w, = 3, and we argue this is 
the special point. We calculated the number of surface contacts in these 
simulations in addition to the survival rate. 

Our first result from the bulk simulations is that not only is the 
specific heat at wK~a-=3 diverging, but the local exponent estimates 
increase as a function of the trail length (see Fig. 3). The conclusion that 
the temperature given by wKca-= 3 is the exact collapse temperature is in 
conflict with the above-mentioned Monte Carlo results. ~3~ To resolve this 
conflict, we note that these Monte Carlo results were extracted from trails 
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Fig. 2. The boundary shape of the lattice used in the surface simulations. The dashed part 
of the lattice indicates that part of the lattice unused by the trail. A trail can move along 
the surface freely and at every second site can choose with probability 1-p.~ to cross the 
boundary and enter the dashed section of the lattice. In this case the trail is terminated and 
a new configuration begun. For the ordinary point, absorbing boundary conditions, with 
p, = 2/3, are used, while for the special point, reflecting boundary conditions, with p, = 1, are 
utilized. Every trail begins at the site marked with the bullet. 

of lengths around N= 200 .  However, in ref. 17 we showed for a similar 
model that one might have to consider much longer configurations to be 
able  to e l imina te  the inf luence o f  finite-size co r rec t ions  to scaling. 

Us ing  the  scal ing re la t ion  2 - c t  = 1/~b, we ob t a ined  local  es t imates  o f  
the exponents ct and 4) of the form (3~) 

CA, ~ C N  ~'~ ( 11 ) 

where  C is a cons tant .  We  see tha t  there is a w e a k  drift  of  the e x p o n e n t  
es t imates  as the walk  length  increases,  and  we ex t r apo la t e  t en ta t ive ly  

= 0.88 +0.07 (12) 
- - 0 . 0 5  

G i v e n  the m o n o t o n i c  change  of  the e x p o n e n t  es t imates ,  we are  r a the r  

conf iden t  tha t  the  c rossover  e x p o n e n t  is larger  than  0.8. H o w e v e r ,  as we 

have  reason  to expect  the presence  o f  l oga r i t hmic  cor rec t ions ,  we c a n n o t  
exclude  wi th  cer ta in ty  tha t  the c ros sove r  e x p o n e n t  migh t  be equa l  to one.  
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Fig. 3. The finite-size specific heat C~ plotted versus the length N in a double-logarithmic 
plot, indicating a power-law divergence. The inset shows local estimates ~b,v of the crossover 
exponent q~ from the specific heat data, indicating a strong drift of the estimates. Here, as in 
the next figures, either the error bars are indicated explicitly or the data converged within 
graphical accuracy. 

The consistency of this app roach  has been checked by calculat ing 
est imates of the exponents  ~ and ~b from the internal  energy, which is 
expected to scale as 

U N ~  Uo~ - U N  t=-  i)~ (13) 

where U is a constant  and again 2 -  a = 1/~b. We get comparab le  exponent  
est imates (see Fig. 4), providing reasonable  evidence that  the tricritical 
scaling relat ion holds and certain evidence that  w--wKc-r  is the collapse 
t ransi t ion point.  Hence we are able to be far more  confident that  the 
collapse t ransi t ion is at w = WKGT than we are about  its nature.  However ,  
the evidence does still suggest a tricrit ical scaling. 

N o w  we examine the par t i t ion  function scaling. In Fig. 5 we plot  the 
inverse of  the probabi l i ty  Q Jr that  a trail has not  t r apped  after N steps 
versus log N. We find, in agreement  with Ziff e t  al.,  t38~ a l inear dependence,  
so that  

Q (14) 
Q u  ~ log N 
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Fig. 4. The finite-size internal energy UN plotted versus the length N in a double-logarithmic 
plot. The inset shows local estimates ~b N of the crossover exponent ~b from the internal energy 
data. Again there is a strong drift of the estimates. 

where Q is a constant. Inserting Z N ~  3NQN, we get 

3 N 

Z N ~  Q log N (15) 

This partition function scaling is certainly different from the one in the 
extended phase. Since QN is bounded above, the high-temperature scaling 
can be ruled out. Moreover, the scaling (15) is inconsistent with the 
expected partition function scaling form in the collapsed phase (6). ~27) 
This provides further evidence that w~G T = 3 is the collapse transition 
point. 

Next we consider the end-to-end distance scaling. Here we use the fact 
that the model of kinetic trails has a reinterpretation as a lattice gas. 
Following Ziff et al., ~38) the model of kinetic trails is isomorphic to paths 
in the Lorentz lattice gas t34' 35) model known as the Ruijgrok-Cohen mirror 
model (36-3s~ with a scatterer concentration c = 2/3. One original interest ~36, 37) 
in the mirror model lay in the calculation of the diffusion coefficient D. 
From ref. 38, Eq. (19), it follows that this diffusion coefficient is bounded 
below (and is asymptotically dominated) by the product of the average 
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Fig. 5. The inverse of the probability of open trails Qu plotted versus the logarithm of the 
length N, indicating linear behavior. 

mean-square end-to-end distance R~v and the probability of open trails Qu, 
normalised by 4N; that is, 

R2QN 
D > - -  (16) 

4N 

Originally, it was expected that this model exhibits diffusion, 136) which in 
turn implies that the length scale exponent is equal to 1/2, and this view 
was supported by simulational evidence based on simulations of walks up 
to lengths of 4000 steps, t37~ Using our data, we plot in Fig. 6 this lower 
bound, which now appears to diverge logarithmically. We therefore con- 
clude that there is no diffusion constant and moreover that the system 
exhibits superdiffusive rather than the more usual subdiffusive behavior t42~ 
that sometimes arises in these lattice gases. 

Reinterpreting this result in connection with the partition function 
scaling, we see that R2QN/4N ~ C~ log N implies 

Rlv~ RN 1/2 log N (17) 

Therefore, we have indeed v = 1/2, however, with a logarithmic correction. 
Note that even assuming the diffusion constant existed, RN still would have 
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Fig. 6. A lower bound of the mean square displacement in the mirror model with c---2/3 is 
given by the contributions Q~R~, from open trail configurations. This gives a lower bound 
Q~R~{4NI of the diffusion coefficient D. The deviation from diffusive behavior is shown by 
the linear increase of this bound in log N. The inset shows a plot of the same quantity on a 
linear scale for short walks for comparison with Fig. 2 in ref. 37, thereby highlighting the 
understandable difficulty in finding this logarithmic growth. 

a confluent logar i thmic correction. (3s) Al though we obta in  the exponent  
value v = 1/2 expected in the col lapsed phase,  this does not  imply that  we 
are in the col lapsed phase. Consider ing the densi ty of  the configurat ions 
pu  ~ C 2 N / R ~ ,  we can conclude that  

Pu ~ C~(log N) -2 (18) 

so that  the densi ty in fact decreases to zero logari thmical ly.  Note  again that  
Ziff et a,/. (38) could have come to a similar conclusion,  albeit  with different 
power  to the logari thm. This zero-densi ty  conclusion is in cont radic t ion  to 
the definit ion of  the col lapsed phase,  where a nonzero  density is expected. 
We therefore conclude again that  w = WKGT is the collapse t ransi t ion point.  

Let us now turn to the surface simulations.  By considering the half- 
plane shown in par t  in Fig. 2 and our  earl ier  ideas, (~v~ one can unders tand  
that  the generat ion of kinetic growth  trails on this half-plane can also lead 
to the statistics of  ISAT interact ing with a surface. This surface potent ia l  is 
control led by choosing the probabi l i ty  of  passing across the surface. When  
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a configurat ion passes across the surface the trail  is s topped and a new 
configurat ion is begun. The usual par t i t ion  functions Z ~) and Z ~ )  are then 
p ropor t iona l  to the probabi l i t ies  QN of trails being open at  a certain length 
N, and  absorb ing  into the surface (as the site at which the walk starts 
cannot  be revisited by construct ion,  they cannot  form loops),  respectively. 

Let us first consider  complete ly  absorb ing  bounda ry  condi t ions ,  
cor responding  to ws = 1. Here the probabi l i ty  PN of adsorp t ion  at  step N 
is related to the probabi l i t ies  of  survival QN via 

PN=QN--QN+j (19) 

Assuming a power  law decay of  QN, we can therefore deduce that  

- 7 1  t 1 (20) 

and using the Barber  scaling relat ion 

y +  v=271 - -~ l t  (21) 

0 . 1 -  I 
-i 

t 
- i  

,- t  

- 4  

0.01 t 

,-i 

.OOl -~ 

' ' , , ,. 

0-508 t 
0.504 1 
o.o  : T ! l  I - !  

. . . . . . . .  I . . . .  

1000 10000 

lOOO 10000 

N 

Fig. 7. The probability of open trails Q,~ in the presence of an absorbing boundary plotted 
versus the length N in a double-logarithmic plot, indicating a power-law decay. The inset 

oral shows local estimates ~, ~, ~, of the closure exponent 7~ ra . The horizontal line corresponds to the 
value ~,~d = 1/2. 
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with y = 1 and v = 1/2, it follows that 

y ~ d =  __ 1/2 and y~rd = 1/2 (22) 

To test this argument,  we measure the probability nord that trails are open 
~ N  

at length N. Figure 7 shows a pure power-law decay, leading to a value of  
y~rd =0.501(3),  which confirms the above scaling argument. 

With completely reflecting boundary  conditions (which correspond to 
w, = 3) we have by construction Qsv = 1, so that also y, = 1. Therefore we 
are in a different scaling regime, which we thus identify with the special 
transition. Using Eq. (21) gives 

y]~ = 1/2 and y]P= 1 (23) 

To confirm that ( w = 3 ,  w s = 3 )  is the surface adsorption point (at bulk 
collapse), we measured the number  of  surface contacts Ms, u as a function 
of N. We reiterate from the introduction that below the adsorption tran- 
sition, this quanti ty is expected to be bounded,  and above it, it is expected 
to scale linearly with N, whereas at the special transition we expect a non- 
trivial power-law behavior 

M~., N ~ M N ~ "  (24) 

1 0 0  
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' ' ' ' ' ' 1  | ' ' ' ' ' ' ' 1  
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N 

Fig. 8. The mean number of surface contacts M~.~ in the presence of a reflecting boundary 
plotted versus the length N in a double-logarithmic plot, indicating a power-law dependence. 
The inset shows local estimates ~. ~ of the surface crossover exponent ~.,. 
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with some constant M. Figure 8 shows that our data are consistent with a 
well-defined surface crossover exponent q~s ~ 0.44( 1 ), which hence confirms 
that the point w , = 3  is the special transition temperature (wad). This 
adsorption point has exponents different from those expected when the 
bulk is either at high or low temperatures. Hence, the very existence of a 
criticial adsorption point lends further credence to the argument that 
w = WKG T is the bulk collapse point. 

3.  C O N C L U S I O N  

We have studied the simulations of kinetic growth trails on the square 
lattice in the bulk and near a surface for long times (up to 106). Using the 
established (in the bulk and extended to surfaces) mapping to static self- 
avoiding trails interacting via contact attraction, we have argued that the 
temperature of this mapping, given by w = 3, lies precisely at the collapse 
point. This is the best hypothesis for the data accumulated and stems from 
(at least) five arguments culled from the data: 

�9 The specific heat diverges and the crossover exponent is clearly 
greater than 0.8. 

�9 We have tested the scaling relation 2 - 0 ~ =  1/~b, which should be 
valid only at the tricritical point, by calculating ~ independently 
from the internal energy, and hence probed the consistency of the 
data. 

�9 The internal density goes to zero logarithmically as a function of 
length, which violates physical ideas of the collapsed phase. 

�9 The partition function scaling differs from that expected at low 
temperatures.(27) 

�9 The surface simulations give a well-defined value of q~,, which 
should not be possible at low temperatures, where surface adsorp- 
tion is believed to be first order. 

Table I. Best Estimates and Exact Conjectures for the Bulk Exponents for the 
Collapse Transaction of ISAT from Kinetic Growth Trail Simulations a 

Exponent v 71 ct~ ~ a 

KGT 1/2(log) l(Iog) l(log) 0.88 +~176 0.86+o~ o9 
DS walks 4/7 8/7 6/7 3/7 - 1/3 

The annotation (log) indicates the presence of confluent logarithmic factors. These are to be 
compared to the values for the Duplantier and Saleur walk model. 
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Table II. Best Estimates and Exact Conjectures for the Surface Exponents for 
the Collapse Transition of ISAT from Kinetic Growth Trail Simulations" 

Exponent ) ord ~ d  ),]p ),~p ~.r 

KGT 1/2 1/2 l I/2 + 0.0o5 
- 0.440 -o.o., 

DS walks 4/7 - 4 / 7  8/7 4/7 8/21 

"The annotation (log) indicates the presence of confluent logarithmic factors. These are to be 
compared to the values for the Duplantier and Saleur walk model. 

We believe these points taken together present a consistent view of the 
collapse transition in trails being at the temperature given by w = WKC T = 3 
(it is, however, still possible that some unseen pathology invalidates our 
conclusion). Our exact conjectures and numerical estimates of all the 
exponents are given in Tables I and II, and are seen to be quite different 
from those of the DS model/14, 23.24) On the other hand, while the collapse 
point has been identified, its tricritical nature has not been confirmed with 
great accuracy. 

The results also shed light on the existence of a diffusion constant in 
the long-time limit of the related Lorentz lattice gas (Ruijgrok-Cohen 
mirror model). Our simulations show that the diffusion 'constant' diverges 
logarithmically and hence does not exist. 
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